STABILITY OF BOUNDARY BETWEEN TWO
NONISOTHERMAL MAGNETIZABLE FLUIDS
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The nature of the interconnection of the thermocapillary mechanism of convective instability
and the magnetic mechanism of surface instability is investigated as a function of the heat~
transfer conditions and the characteristic of the adjoining media.

The thermocapillary stability of a layer of magnetizable liquid was studied in {1, 2] for heat transfer at
the free surface described by Newton's law. Above the plane upper boundary of the layer was a nonmagnetic
gas of negligible density and viscosity. In this formulation the problem is considerably simplified since it is
not necessary to solve the hydrodynamic and heat equations in the gas,

In practice the layer of magnetizable liquid is often bounded by a layer of liquid which does not mix with
it. In such a case it is clearly necessary to consider the dynamics of both media. In this connection we in-
vestigate below the stability of a horizontal layer of nonisothermal magnetizable liquid bounded below (z = —1)
by a plane surface separating it from a solid nonmagnetic body, and above (z = 0) by a plane surface separating
it from an infinite mass of immiscible liquid which is also magnetizable.

The whole system is in a gravitational field directed vertically downward and a uniform magnetic field
transverse to the layer. In addition, a temperature distribution with a constant vertical gradient is maintained
in the layer. The z axis of a Cartesian coordinate system is directed vertically upward transverse to the layer,
and the x and y axes are along the layer, We consider the interaction of the thermocapillary mechanism of
convective instability with the magnetic mechanism of surface instability and neglect all other mechanisms of
convective instability (gravitational and magnetic) in comparison with the thermocapillary mechanism, This
is valid, in particular, for sufficiently thin layers, and is mathematically equivalent to the limit K= 0, 8 = 0,

By using the results of [1, 2] it is easy to write down the linearized thermomechanical equations for a
magnetizable liquid and the boundary conditions for small normal perturbations ~exp (ikr) describing the ie
problem posed. The magnetization of the liquid varies linearly with the magnetic field intensity M = xH, a =
o — o(T—T*. In this case the potentials of the magnetic field perturbations in all three media satisfy
Laplace's equation

AD; =0 (i=1, 2, 3), O

where the subscript 3 refers to the solid nonmagnetic body (z < —I), 2 to the upper semiinfinite massif of
magnetic liquid (z > 0), and 1 to the layer (—1 < z < 0},

Since we neglect the temperature dependence of the magnetization, the perturbations of the magnetic
field are related to the velocity and temperature perturbations only through the boundary conditions at the
free surface [1, 2]. Therefore, it is expedient to simplify the boundary-value problem by eliminating the
potentials of the magnetic field perturbations ¢;. By solving (1) and satisfying the boundary condtions we
find
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By eliminating the ®;, the pressure, and the longitudinal velocity components from the thermomechan~
ical equations for the magnetizable liquid and the boundary conditions, we obtain the dimensionless form of
the initial boundary-value problem:
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where F is the perturbation of the free surface.

In going to dimensionless quantities the following scales were used: length, layer thickness I; tempera-
ture, v1l; velocity, %,/1.

The parameters characterizing the problem posed have the following form: the Bond number Bo = (o; —
p,)gl¥/c, the Marangoni number Ma = oy;1%/ %y, the gravitational number C = ny%/(p; — p,)gl®, the coupling
parameters A,/Aq, 75/, ®/%,, the relative magnetic permeabilities of the layer and the upper massif #; and
Has Si = ug(My — M,)2Ap; — py)gw is the surface instability number of the magnetizable liquid.

The boundary conditions at the free surface were obtained by using the continuity conditions for velocity.
temperature, heat flux, tangential component of the magnetic field intensity and the normal component of the
magnetic induction, and also the conditions for the normal and tangential stresses.

The boundary conditions for the temperature (5) correspond to the following: a) the temperature is speci-
fied on the lower plane (its perturbation vanishes); b) a constant heat flux is specified (the heat flux related to
the temperature perturbation vanishes). Henceforth, all expressions denoted by the letters a and b corre-
spond toone of the two forms of conditions for the temperature at the solid boundary (z = —1).

We investigate the stability of equilibrium for monotonic perturbations only.
The solution of problem (3)-(9) can be obtained in the usual way, and leads to the following limits of
stability:
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Equations (10) and (11) show that the convective (thermocapillary) and surface (magnetic) instability
mechanisms are interconnected. The nature of this interconnection depends on the deformability of the sur-
face (parameters Bo and C) and the characteristics of the adjoining media (parameters 1,/n;, Ay/Ar, /%y,
by, and uy).
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For C = 0 the deformation of the surface does not affect the thermocapillary instability mechanism. In
this case the thermocapillary and magnetic mechanisms are not interconnected; i.e., the instability of the sur-
face arises only from the magnetic mechanism, as is the case for an isothermal magnetizable liquid, and
does not lead to the initiation of motion; the convective instability arises only from the thermocapillary mech-
anism and does not lead to deformation of the surface, '

For a better understanding of the physical meaning of the interconnection under study we consider the
limiting cases of wavelengths which are very short and very long in comparison with the layer thickness, i.e.,
k=« and k— 0. ’

1, Large Wave Numbers, k. — =, In this case Eqs. (10) and (11) lead to the same result — the boundary
conditions for the temperature on the undeformable boundary (z =—1) do not affect the stability,
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Equation (13) agrees with the result obtained in [3] for a layer of ordinary liquid; i.e., the deformation of the
surface can be neglected for short wavelength perturbations, and the magnetic mechanism of surface instability
is interconnected with the thermocapillary mechanism only over a narrow range of Si values near the critical
value Sip for an isothermal liquid. In addition, as k — = the neutral Ma (k) curve for Si values far from Sip
depends on the parameters ny/1y, Ay/A;, and %/, in exactly the same way as for an ordinary liquid [3].

2. Small Wave Numbers, k — 0. This approximation leads to different results in the two cases con~
sidered:
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Equations (14) and (15) can be minimized analytically if the following conditions are satisfied:
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As a result we obtain the following critical values of the wave number and Marangoni number:
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Fig. 1. Ma®" as a function of Si for #y/%, = Ay/A; = 0, C = 0.01 [I) 5/, = 0;
II) na/ny = 10]: 1) vBo = 1; 2) VBo = 3.

Fig. 2. Domain of continuity of k®T(Si) curves: 1) n,/ny = 0; 2) 1; 3) 2; 4) 10,
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It is easy to see that for ®y/%, = 0 and heating from below, the magnetic mechanism of surface instability
has a destabilizing effect on the instability of the layer; i.e., as Si is increased, the critical values of Ma de-
creases to zero for Si = 2(1 + u,)/s,.

The interconnection of the thermocapillary and magnetic mechanisms for /%, > 0 is of a somewhat
special character, since in this case pure thermocapillary instability is possible for transfer in both direc-
tions (heating from above or from below).

3) For arbitrary values of the parameters Egs. (10) and (11) were analyzed numerically. The parameters
#y and u, were fixed at 4y = 1.5, §y = 2, and the values of all other parameters were varied. It should be
emphasized that everywhere it is assumed that the density of the lower liquid p; is larger than that of the upper
Py, Since otherwise mechanical equilibrium could not exist.

If #4/%; = 0 and the medium is heated from above, instability arises from the magnetic mechanism, and
the thermocapillary mechanism has a stabilizing effect. For heating from below, instability of the layer can
arise from both the thermocapillary and magnetic mechanisms, and the interconnection between them becomes
stronger with increasing values of the gravitational number C. In addition, the layer becomes less stable
with an increase in the gravitational number; i.e., the critical values of the Marangoni number are decreased,
For Si = 0 the critical values of Ma also decrease with an increase of the Bond number Bo, The nature of the
MaCr(Si) dependence on. the parameters Bo, C, 1ny/M;, and Ay/A; is more complicated, and will be explained
in the analysis of the graphs., The dependences of the critical value of the Marangoni number on the surface
instability number Si for various values of Bo and 74/, are shown in Fig.1l. All the graphs presented in this
paper are for an isothermal lower boundary; i. e., they are calculated from Eq. (10). In order to save space
the results for a thermally insulated boundary are not shown graphically, It is clear from Fig. 1 that the criti-
cal values of the Marangoni number increase in the ratio 7,/7;; the nature of the Ma®T(Si) dependence is
changed also: the solid curves (»/n{ = 0) are smooth, but the open curves (1,/1; = 10) have a sharp bend.
Accordingly, the curves for kCT(Si) are continuous or have a discontinuity. In Fig.2 the ranges of values
of the parameters Bo and C for which the k®F(Si) curves are continuous lie between the open curve and the
solid curves 1-4. For values of C and Bo which lie outside the curves the kF(Si) curves have a discontinuity.
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Fig. 3. Critical Ma®T(Si) curves for %y/ry =0, ny/My =1 [D) Ay/A = 0;
M) AyA =1} HVBo =1;2) 3.

Fig. 4. MaCr as a function of Si for C = 0.1, vBo = 0.1: ) %/%, = 1; IT)
'Kj_/%z = 10-
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An analysis of these graphs shows that as 7,/m; is increased the domain of continuity of the k°T(S1) curves
(smoothness of the Ma®T (S8i) curves) is narrowed, i.e., the interconnection between the thermocapillary and
magnetic mechanisms is weakened.

The effect of a change of A,/A; on the stability of the layer was investigated also, To do this we con-
sidered the results of a numerical analysis of Eq. (10) for fixed ®y/%y, 72/, and C for various values of Bo
and Ay/A;, It was found that as Ay/A; increases, the critical value of the Marangoni number increases, The
limiting case Ay/A; —~ = indicates a transition to an isothermal surface when the gradient of the surface tension
vanishes at the boundary, and consequently thermocapillary instability is impossible; Ma®T approaches
infinity. In this limiting case the instability of the layer will be produced by the magnetic mechanism of sur-
face instability. The critical Ma®’(Si) curves are shown in Fig, 3 for various values of Bo and Ay/A;.

So far in the numerical analysis of Eqs. (10) and (11), we have limited ourselves to the case when the
thermal diffusivity of the lower fluid can be neglected in comparison with that of the upper (®#;/%, = 0). In
such situations the thermocapillary instability is related to convection in the lower phase only; the upper liquid
is passive., If the thermal diffusivity of the lower phase is not negligible in comparison with that of the upper
(n/ny = 0), the thermocapillary instability is related to convection in both lower and upper phases. There-
fore instability is possible even if there is no magnetic field for heating both from below and above. It is
quite natural that in the case analyzed (®y/w, # 0) the deformability of the surface, characterized by the
parameter C, will have a significant effect on the stability; with its increase the limiting values of the tem-
perature gradients are decreased for heating from below and increased for heating from above. In a magne-
tic field the surface of a magnetizable liquid becomes less stable, i.e., more deformed, and therefore the
dependence of the critical values of the Marangoni number on Si will be similar to the dependence of Ma®T on
C, the only difference being that for heating from below Ma®’ approaches zero asymptotically as C increases,
while Ma®T decreases considerably more sharply with increasing Si and becomes zero for Si = Sip. This is
related to the presence of a magnetic mechanism of surface instability in a magnetizable liquid, For heating
from above the critical values of Ma increase with increasing C and increasing Si. These characteristics

are illustrated by the Ma®"(Si) curves shown in Fig. 4. It is easy to see that the domain of stability is bounded
from above and from below,

It should be noted that when the heat flux vanishes on the lower boundary, the layer under investigation

will be more unstable than in the case analyzed; nevertheless, the qualitative relations established above will
hold.
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NOTATION

X, ¥, 2 are the Cartesian coordinates;
are the perturbations of temperature and z component of velocity;
is the potential of magnetic field perturbations;
is the magnetization of liquid;
is the magnetic field intensity;
is the magnetic permeability of vacuum;
is the magnetic susceptibility;
is the dynamic viscosity; '
is the thermal conductivity;
is the thermal diffusivity;
is the acceleration due to gravity;
is the volume coefficient of expansion;
is the pyromagnetic coefficient;
is the layer thickness;
is the temperature gradient;
[kx, ky, 0] is the wave vector;
is the surface tension;

2o
<

o

- (8 T)/
s is the relative magnetic permeability;
is the amplitude of perturbations of free surface.
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CONVECTIVE MOTION OF A CONDUCTING LIQUID
IN AN ELECTROMAGNETIC FIELD, TAKING INTO
ACCOUNT FINITE WALL THICKNESS AND
THERMAL CONDUCTIVITY

Vu Zui Kuang and Ngo Zui Kan UDC 538.4:536.24
The effect of the temperature-dependent electrical conductivity of the liquid and the finite wall
thickness and the thermal conductivity on stability is investigated in a linear formulation,
In [1] the convective instability of a liquid layer in a magnetic field was investigated, taking into account
the finite wall thickness and thermal conductivity. In the present work, stability of this type is investigated
taking account of the temperature dependence of the electrical conductivity.

1. Formulation of the Problem

Consider an infinite horizontal layer of electrically conducting liquid of thickness B, the electrical con-
ductivity of which depends linearly on the temperature c=00 [14+a(T—7Tw)] under the condition that
|a(T—Tw)|<1 [2]. The walls bounding the layer have the same finite thickness and thermal conductivity
A. The temperatures at the external surfaces of the walls are given to be constant, but different (T4 is the
temperature at the lower wall and T, at the upper wall). In the y direction, a constant external electric field
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